Kernel-function Based Algorithms for Semidefinite Optimization

نویسندگان

  • Mohamed El Ghami
  • Yan-Qin Bai
  • Kees Roos
چکیده

Recently, Y.Q. Bai, M. El Ghami and C. Roos [3] introduced a new class of so-called eligible kernel functions which are defined by some simple conditions. The authors designed primal-dual interiorpoint methods for linear optimization (LO) based on eligible kernel functions and simplified the analysis of these methods considerably. In this paper we consider the semidefinite optimization (SDO) problem and we generalize the aforementioned results for LO to SDO. The iteration bounds obtained are analogous to the results in [3] for LO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function

Interior-point methods (IPMs) for semidefinite optimization (SDO) have been studied intensively, due to their polynomial complexity and practical efficiency. Recently, J.Peng et al. [14, 15] introduced so-called self-regular kernel (and barrier) functions and designed primal-dual interior-point algorithms based on self-regular proximity for linear optimization (LO) problems. They have also exte...

متن کامل

Kernel Function Based Interior–point Algorithms for Semidefinite Optimization

We propose a primal-dual interior-point algorithm for semidefinite optimization(SDO) based on a class of kernel functions which are both eligible and self-regular. New search directions and proximity measures are defined based on these functions. We show that the algorithm has O( √ n log ε ) and O( √ n logn log ε ) complexity results for smalland large-update methods, respectively. These are th...

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RAIRO - Operations Research

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2009